Gateway
The gateway collector deployment pattern consists of applications (or other collectors) sending telemetry signals to a single OTLP endpoint provided by one or more collector instances running as a standalone service (for example, a deployment in Kubernetes), typically per cluster, per data center or per region.
In the general case you can use an out-of-the-box load balancer to distribute the load amongst the collectors:
For use cases where the processing of the telemetry data processing has to happen in a specific collector, you would use a two-tiered setup with a collector that has a pipeline configured with the Trace ID/Service-name aware load-balancing exporter in the first tier and the collectors handling the scale out in the second tier. For example, you will need to use the load-balancing exporter when using the Tail Sampling processor so that all spans for a given trace reach the same collector instance where the tail sampling policy is applied.
Let’s have a look at such a case where we are using the load-balancing exporter:
- In the app, the SDK is configured to send OTLP data to a central location.
- A collector configured using the load-balancing exporter that distributes signals to a group of collectors.
- The collectors are configured to send telemetry data to one or more backends.
Note
Currently, the load-balancing exporter only supports pipelines of thetraces
type.Examples
NGINX as an “out-of-the-box” load balancer
Assuming you have three collectors (collector1
, collector2
, and
collector3
) configured and you want to load balance traffic across them using
NGINX, you can use the following configuration:
server {
listen 4317 http2;
server_name _;
location / {
grpc_pass grpc://collector4317;
grpc_next_upstream error timeout invalid_header http_500;
grpc_connect_timeout 2;
grpc_set_header Host $host;
grpc_set_header X-Real-IP $remote_addr;
grpc_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
}
server {
listen 4318;
server_name _;
location / {
proxy_pass http://collector4318;
proxy_redirect off;
proxy_next_upstream error timeout invalid_header http_500;
proxy_connect_timeout 2;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
}
upstream collector4317 {
server collector1:4317;
server collector2:4317;
}
upstream collector4318 {
server collector1:4318;
server collector2:4318;
}
load-balancing exporter
For a concrete example of the centralized collector deployment pattern we first need to have a closer look at the load-balancing exporter. It has two main configuration fields:
- The
resolver
, which determines where to find the downstream collectors (or: backends). If you use thestatic
sub-key here, you will have to manually enumerate the collector URLs. The other supported resolver is the DNS resolver which will periodically check for updates and resolve IP addresses. For this resolver type, thehostname
sub-key specifies the hostname to query in order to obtain the list of IP addresses. - With the
routing_key
field you tell the load-balancing exporter to route spans to specific downstream collectors. If you set this field totraceID
(default) then the Load-balancing exporter exports spans based on theirtraceID
. Otherwise, if you useservice
as the value forrouting_key
, it exports spans based on their service name which is useful when using connectors like the Span Metrics connector, so all spans of a service will be send to the same downstream collector for metric collection, guaranteeing accurate aggregations.
The first-tier collector servicing the OTLP endpoint would be configured as shown below:
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
exporters:
loadbalancing:
protocol:
otlp:
tls:
insecure: true
resolver:
static:
hostnames:
- collector-1.example.com:4317
- collector-2.example.com:5317
- collector-3.example.com
service:
pipelines:
traces:
receivers: [otlp]
exporters: [loadbalancing]
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
exporters:
loadbalancing:
protocol:
otlp:
tls:
insecure: true
resolver:
dns:
hostname: collectors.example.com
service:
pipelines:
traces:
receivers: [otlp]
exporters: [loadbalancing]
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
exporters:
loadbalancing:
routing_key: service
protocol:
otlp:
tls:
insecure: true
resolver:
dns:
hostname: collectors.example.com
port: 5317
service:
pipelines:
traces:
receivers: [otlp]
exporters: [loadbalancing]
The load-balancing exporter emits metrics including
otelcol_loadbalancer_num_backends
and otelcol_loadbalancer_backend_latency
that you can use for health and performance monitoring of the OTLP endpoint
collector.
Tradeoffs
Pros:
- Separation of concerns such as centrally managed credentials
- Centralized policy management (for example, filtering certain logs or sampling)
Cons:
- It’s one more thing to maintain and that can fail (complexity)
- Added latency in case of cascaded collectors
- Higher overall resource usage (costs)